CFL Conditions for Runge-Kutta discontinuous Galerkin methods on triangular grids
نویسندگان
چکیده
We study time step restrictions due to linear stability constraints of Runge-Kutta Discontinuous Galerkin methods on triangular grids. The scalar advection equation is discretized in space by the Discontinuous Galerkin method with either the Lax-Friedrichs flux or the upwind flux, and integrated in time with various Runge-Kutta schemes designed for linear wave propagation problems or non-linear applications. Von-Neumann-like analyses are performed on structured periodic grids made up of congruent elements, to investigate the influence of element shape on the stability restrictions. We assess CFL conditions based on different element size measures, among which only the radius of the inscribed circle and the shortest height prove appropriate, although they are not totally independent of the triangle shape. We explain their general behaviour with respect to element quality, and report the corresponding Courant numbers with both types of flux and polynomial order p ranging from 1 to 10, for use as guidelines in practical simulations. We also compare the performance of the Lax-Friedrichs flux and the upwind flux, and we draw general conclusions about the relative computational efficiency of RK schemes. The application of CFL conditions to two examples involving respectively an unstructured and a hybrid grid confirms our results, although it shows that local stability criteria tend to yield too restrictive conditions.
منابع مشابه
A Conservation Constrained Runge-Kutta Discontinuous Galerkin Method with the Improved CFL Condition for Conservation Laws
We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [6, 5, 4, 3] for conservation Laws. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. We use this new formulation to solve conservation laws on one-d...
متن کاملTime step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids
Article history: Received 31 January 2008 Received in revised form 18 June 2008 Accepted 23 July 2008 Available online 19 August 2008
متن کاملA Runge-Kutta Discontinuous Galerkin Method with Conservation Constraints to Improve CFL Condition for Solving Conservation Laws
We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG) method [7, 6, 5, 4] for conservation Laws. The new formulation requires the computed RKDG solution in a cell to satisfy additional conservation constraint in adjacent cells and does not increase the complexity or change the compactness of the RKDG method. We use this new formulation to solve conservation laws on one-d...
متن کاملSemi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge-Kutta time discretizations
This paper investigates the use of a special class of strong-stability-preserving (SSP) Runge–Kutta time discretization methods in conjunction with discontinuous Galerkin (DG) finite element spatial discretizatons. The class of SSP methods investigated here is defined by the property that the number of stages s is greater than the order k of the method. From analysis, CFL conditions for the lin...
متن کاملDynamic p-adaptive Runge–Kutta discontinuous Galerkin methods for the shallow water equations
In this paper, dynamic p-adaptive Runge–Kutta discontinuous Galerkin (RKDG) methods for the twodimensional shallow water equations (SWE) are investigated. The p-adaptive algorithm that is implemented dynamically adjusts the order of the elements of an unstructured triangular grid based on a simple measure of the local flow properties of the numerical solution. Time discretization is accomplishe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011